ESTE BLOG FUE CREADO A PEDIDO EXPRESO DE MIS ALUMNOS AQUÌ ENCONTRARÁN APUNTES Y EXPLICACIONES DE VARIAS MATERIAS, ADEMÀS DE LA EJERCITACIÒN CORRRESPONDIENTE...ESPERO LES SEA DE GRAN UTILIDAD.CARIÑOS INÈS
lunes, 5 de junio de 2017
GENÈTICA MENDELIANA
2. Genética mendeliana.
La genética mendeliana es la parte de la genética que sigue la metodología que ideó Mendel. Se basa en el estudio de las proporciones en las que se heredan las características de los individuos.
Se considera a Mendel como fundador de la genética, aunque la comunidad cien- tífica no tuvo en cuenta su obra hasta 40 años más tarde, cuando sus trabajos fueron redescubiertos independientemente por De Vries, Correns y Von Tschermak.
Durante las dos terceras partes del siglo xx, se ha podido descubrir la función de muchos genes, las leyes que rigen su transmisión hereditaria, se ha evaluado matemáticamente la probabilidad de heredar una determinada característica, se ha mejorado el rendimiento de muchos cultivos, en épocas en las que la naturaleza íntima de los genes no era aún accesible al investigador.
A la luz de los conocimientos actuales, podemos analizar las posibilidades que nos brinda el estudio de las características hereditarias de la descendencia de un cruza- miento.
El éxito de los trabajos de Mendel se debe a varios factores:
- La selección adecuada del material de partida: la planta del guisante.
- El riguroso estudio estadístico de la descendencia, aspecto que no tuvieron en cuenta los biólogos anteriores.
- La simplificación del problema, al analizar un solo carácter de los muchos que se podían encontrar alterados.
2.1. Conceptos básicos de la herencia biológica.
Existen unos conceptos fundamentales en Genética que permiten la adecuada comprensión de los mecanismos hereditarios. Son los siguientes:
- Genética. Ciencia que estudia la transmisión de los caracteres hereditarios.
- Carácter hereditario. Característica morfológica, estructural o fisiológica presente en un ser vivo y transmisible a la descendencia.
- Gen. Término creado por Johannsen en 1909 para definir la unidad estructural y funcional de transmisión genética. En la actualidad, se sabe que un gen es un fragmento de ADN que lleva codificada la información para la síntesis de una determinada proteína. Mendel denominó “factor hereditario”.
- Genotipo. Conjunto de genes que posee un individuo.
- Fenotipo. Características que muestra un individuo, es decir, expresión externa del genotipo.
- Alelos. Término introducido por Bateson en 1902 para indicar las distintas formas que puede presentar un determinado gen.
- Homocigoto o raza pura. Individuo que posee dos alelos idénticos para el mismo carácter.
- Heterocigoto o híbrido. Individuo que tiene dos alelos distintos para el mismo carácter.
- Gen o alelo dominante. Gen cuya presencia impide que se manifieste la acción de otro alelo distinto para el mismo carácter.
- Gen o alelo recesivo. Gen que sólo manifiesta su acción en ausencia de un alelo dominante, es decir, únicamente aparece en el fenotipo si se encuentra en homocigosis. - Genes o alelos codominantes. Alelos para el mismo carácter que poseen idéntica capacidad para expresarse y, cuando se encuentran juntos en el mismo individuo, éste manifiesta la acción de ambos.
- Cromosomas homólogos. Pareja de cromosomas en células diploides, que procede uno del progenitor paterno y el otro del materno, son iguales morfológicamente (excepto los cromosomas sexuales) pero no son idénticos, puesto que no tienen la misma composición química, al contener diferentes genes alelos uno y otro cromosoma.
- Locus. Lugar ocupado por un gen en un cromosoma. El plural es loci por ser palabra latina.
- Herencia dominante. Es aquella en la que hay un alelo, el llamado dominante, que no deja manifestarse al otro, el llamado alelo recesivo
- Herencia intermedia. Es aquella en la que uno de los alelos muestra una dominancia incompleta sobre el otro. Así pues, los híbridos tienen un «fenotipo intermedio» entre las dos razas puras.
- Herencia codominante. Es aquella en la que los dos alelos son equipotentes, y por tanto no hay dominancia. Los híbridos presentan las características de las dos razas puras a la vez.
- Dihíbridos. Son los individuos con heterocigosis en dos pares de genes.
- Polihibridos. Son los seres con heterocigosis para muchos pares de genes.
- Alelos letales. Son aquellos alelos que poseen una información deficiente para un carácter tan importante que, sin él, el ser muere. Los alelos letales pueden producir la muerte a nivel del gameto o a nivel del cigoto, pudiendo suceder entonces que el individuo no llegue a nacer, o bien que muera antes de alcanzar la capacidad reproductora. Los alelos letales suelen ser recesivos, por lo que necesitan darse en homocigosis para manifestarse.
- Cariotipo. Conjunto de cromosomas de un individuo, característico de cada especie en cuanto a forma, tamaño y número, que se perpetúan en la descendencia.
- Simbología. Los genes se simbolizan con letras. Si es herencia dominante y sólo hay dos alelos, el dominante se representa con mayúscula y el recesivo con minúscula. La letra escogida puede ser la inicial del nombre del carácter dominante o la del carácter recesivo.
Otro tipo de notación, que permite además simbolizar más de dos alelos, es el uso de exponentes (superíndices). Un caso en el que se utiliza esta anotación es en la herencia de los grupos sanguíneos humanos ABO.
2.1.1. Genotipo y fenotipo.
Los caracteres que manifiesta un individuo es indudable que reconocen como causa inicial el factor hereditario, pero a medida que dicho individuo se desarrolla, también los factores del medio ambiente (clima, alimentación, higiene, etc.) dejan sentir su influencia. En consecuencia, todo carácter depende de dos tipos de factores:
a) Heredables o genéricos, recibidos de los progenitores a través de las células reproductoras de estos y, por tanto, internos.
b) No heredables, procedentes del medio ambiente y, por tanto, externos, que pueden influir a lo largo de la vida del individuo imprimiendo modificaciones a los caracteres heredados.
En conclusión, todo carácter depende de la acción combinada y recíproca entre los factores hereditarios y los ambientales.
Como consecuencia es lógico pensar, que los caracteres no siempre son un fiel reflejo de los factores hereditarios, es decir, que la imagen que observamos en un individuo es el resultado de los factores heredados y de la acción que recibe del medio ambiente.
Para poder establecer esta distinción se han introducido los términos genotipo y fenotipo .
El genotipo es el conjunto de factores hereditarios que posee un individuo por haberlos recibido de sus progenitores. El fenotipo es el aspecto observable cuyo aspecto ha sido adquirido como consecuencia del genotipo que posee y de la acción del medio ambiente, o dicho de otro modo, el fenotipo es la manera de manifestarse el genotipo después de haber actuado sobre él los factores ambientales. Además, como veremos más adelante, existen factores heredables que no llegan a manifestarse (los llamados factores recesivos) y, por tanto, no pueden ser apreciados, lo que también influye en que el fenotipo no refleje fielmente al genotipo.
Mientras el genotipo es estable durante toda la vida, el fenotipo va cambiando. Así, cualquier ser vivo posee siempre los mismos factores hereditarios, pero su aspecto exterior varía profundamente de la edad joven a la adulta o en la vejez.
De todo lo dicho resulta, que lo único heredable es el genotipo, ya que la influencia que ejercen los factores ambientales sobre los caracteres, sólo afectan al individuo sobre el que actúan, perdiéndose con él sin transmitirse a sucesivas generaciones.
2.2. Las leyes de Mendel.
Los descubrimientos de Mendel pueden resumirse en tres leyes, que constituyen los fundamentos básicos de transmisión genética. La terminología que empleo Mendel es de difícil comprensión; por ello vamos a utilizar la terminología actual.
2.2.1. Primera ley de Mendel.
Llamada también ley de la uniformidad de los híbridos de la primera generación, dice que: cuando se realiza el cruzamiento entre dos individuos de la misma especie pertenecientes a dos variedades o razas puras (homocigóticos) todos los híbridos de la primera generación filial son iguales.
En la actualidad esta ley expresa así. “El cruce de dos razas puras da un descendencia híbrida uniforme tanto fenotipica como genotipicamente.”
Esta uniformidad de todos los individuos de la F1 puede manifestarse, bien por parecerse a uno de los padres (herencia dominante), bien porque aparezca un fenotipo con aspecto intermedio (herencia intermedia). Veamos seguidamente un ejemplo de cada caso.
Empecemos por la herencia dominante
Si cruzamos un cobayo (conejillo de Indias) homocigótico para el color negro del pelo (NN ) con otro también homocigótico para el color blanco (nn), todos los cobayos que se obtengan de este cruzamiento serán de color negro (Nn), ya que este domina sobre el blanco.
La explicación de este resultado queda claramente expresada en el esquema. Cuando los individuos homocigóticos que se cruzan (generación P ) forman sus células reproductoras (espermatozoides en el macho y óvulos en la hembra), en virtud del fenómeno de la meiosis los genes que forman la pareja de alelomorfos y que se hallan situados en los respectivos cromosomas homólogos, se separan, yendo a parar cada uno de ellos a una célula reproductora. Como los dos genes que forman la pareja son iguales (NN o bien nn) es lógico que todos los gametos posean el mismo gen (por ejemplo, N si el macho era NN) y lo mismo ocurre con los óvulos (por ejemplo, n si la hembra era nn).
Como consecuencia, al fecundar un espermatozoide a un óvulo solamente podrá formarse la pareja de alelos Nn , de ahí que todos los hijos que forman la F1sean idénticos y heterocigóticos o híbridos. Como el color negro (N) domina sobre el blanco (n), todos presentarán coloración negra.
Veamos ahora un caso de herencia intermedia.
Existen dos variedades de la planta «dondiego de noche» (Mirábilis jalapa) que se diferencian por el color de sus flores: en unas, rojo; en otras, blanco. Si cruzamos una planta homocigótica para el color rojo (RR ), con otra también homocigótica para el color blanco (rr) todas las plantas que se obtengan de este cruzamiento serán de color rosa (Rr).
Como puede observarse en el esquema, la interpretación de los resultados es la misma que en el caso anterior, con la única diferencia que el fenotipo de las flores de la F1 no corresponde a ninguno de los de las plantas progenitoras porque no hay dominancia, y en consecuencia se manifiestan con la misma eficacia el color rojo y el blanco, resultando de ello un color rosa intermedio entre ambos.
2.2.2. Segunda ley de Mendel.
Así como la primera ley hace referencia a lo que ocurre en la Fl, esta segunda trata de interpretar los resultados que se obtienen en la F2 (segunda generación filial) al cruzar los individuos híbridos de la Fl.
La segunda ley es llamada ley de la separación o disyunción de los genes que forman la pareja de alelomorfos, es decir, que los dos genes que han formado pareja en los individuos de la Fl, se separan nuevamente al formarse las células reproductoras de éstos, lo que demuestra que dicho emparejamiento no es definitivo. Esto conduce a que en los individuos de la F2 aparezcan parejas de alelos distintos de los de la Fly, en consecuencia, dicha generación ya no es de genotipo uniforme.
Así, puede formularse esta ley actualmente: “Al cruzar entre sí los híbridos obtenidos en la primera generación, los caracteres antagónicos que poseen se separan y se reparten entre los distintos gametos, apareciendo así varios fenotipos en la descendencia”
Para comprender mejor el alcance de esta ley, seguiremos con los ejemplos expuestos en la primera.
En el caso de la herencia dominante del color del pelo del cobaya, veamos qué ocurre cuando sometemos a cruzamiento dos individuos de la Fl. Al formarse sus gametos, sean óvulos o espermatozoides, en virtud de la meiosis, la mitad poseerán el gen N y la otra mitad el n.
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario
Nota: solo los miembros de este blog pueden publicar comentarios.