lunes, 12 de diciembre de 2016

RADIACTIVIDAD PARTÍCULAS , RAYOS Y APLICACIONES



RADIACTIVIDAD

La radiactividad es una propiedad de ciertos elementos químicos cuyos núcleos atómicos son inestables: con el tiempo para cada núcleo llega un momento en que alcanza su estabilidad al producirse un cambio interno, llamado desintegración radiactiva, que implica un desprendimiento de energía conocido de forma general como "radiación". La energía que interviene es muy grande si se compara con la desprendida en las reacciones químicas en que pueden intervenir las mismas cantidades de materiales , y el mecanismo por el cual se libera esta energía es totalmente diferente.




FISIÓN NUCLEAR

Se entiende por fisión, la división de un núcleo muy pesado en un par de núcleos de masa próxima a 60, proceso en el cual se libera gran cantidad de energía

A finales de 1938, O.Hann y F. Strassmann descubrieron en uranio bombardeado con neutrones, la presencia del radioisótopo 139Ba, formado necesariamente por escisión del núcleo de uranio. Este proceso se denominó Fisión nuclear.

Según el  modelo  de la gota líquida, la fisión se produce porque al captar un neutrón, el núcleo oscila y se deforma, con lo que pierde su forma esférica adquiriendo la figura de un elipsoide entre cuyos extremos se produce una repulsión electrotastica
 que puede llegar a provocar la rotura del núcleo pesado en dos fragmentos



FUSIÓN NUCLEAR

En palabras sencillas, fusiòn  nuclear es la unión de dos núcleos livianos acompañada por una liberación de energía.

Además de en la fisión de núcleos de átomos pesados, también se libera energía en la formación de núcleos intermedios a partir de núcleos muy ligeros, por ejemplo, de deuterio, 21H, y de tritio, 31H. Este proceso se conoce como fusión nuclear.



Las radiaciones y la radioterapia

Las radiaciones ionizantes pueden destruir preferentemente las células tumorales y constituyen una terapéutica eficaz contra el cáncer, la radioterapia, que fue una de las primeras aplicaciones del descubrimiento de la radioactividad.

En Francia, entre el 40 y el 50% de los cánceres se tratan por radioterapia, a menudo asociada a la quimioterapia o la cirugía. La radioactividad permite curar un gran número de personas cada año.

Las diferentes formas de radioterapia:
La curioterapia, utiliza pequeñas fuentes radioactivas (hilos de platino - iridio, granos de cesio) colocados cerca del tumor.
La tele radioterapia, consiste en concentrar en los tumores la radiación emitida por una fuente exterior.
La inmunorradioterapia, utiliza vectores radio marcados cuyos isótopos reconocen específicamente los tumores a los que se fijan para destruirlos.

La esterilización

La irradiación es un medio privilegiado para destruir en frío los microorganismos: hongos, bacterias, virus... Por esta razón, existen numerosas aplicaciones para la esterilización de los objetos, especialmente para el material médico-quirúrgico.

La protección de las obras de arte

El tratamiento mediante rayos gamma permite eliminar los hongos, larvas, insectos o bacterias alojados en el interior de los objetos a fin de protegerlos de la degradación. Esta técnica se utiliza en el tratamiento de conservación y de restauración de objetos de arte, de etnología, de arqueología.

La elaboración de materiales

La irradiación provoca, en determinadas condiciones, reacciones químicas que permiten la elaboración de materiales más ligeros y más resistentes, como aislantes, cables eléctricos, envolventes termo retractables, prótesis, etc.

La radiografía industrial X o g

Consiste en registrar la imagen de la perturbación de un haz de rayos X o g provocada por un objeto. Permite localizar los fallos, por ejemplo, en las soldaduras, sin destruir los materiales.

Los detectores de fugas y los indicadores de nivel

La introducción de un radioelemento en un circuito permite seguir los desplazamientos de un fluido, detectar fugas en las presas o canalizaciones subterráneas.

El nivel de un líquido dentro de un depósito, el espesor de una chapa o de un cartón en curso de su fabricación, la densidad de un producto químico dentro de una cuba... pueden conocerse utilizando indicadores radioactivos.

Los detectores de incendio

Una pequeña fuente radioactiva ioniza los átomos de oxígeno y de nitrógeno contenidos en un volumen reducido de aire. La llegada de partículas de humo modifica esta ionización. Por esta razón se realizan y se utilizan en los comercios, fábricas, despachos... detectores radioactivos sensibles a cantidades de humo muy pequeñas.

Las pinturas luminiscentes

Se trata de las aplicaciones más antiguas de la radioactividad para  la lectura  de los cuadrantes de los relojes y de los tableros de instrumentos para la conducción de noche.

La alimentaciòn  de energía de los satélites

Las baterías eléctricas funcionan gracias a pequeñas fuentes radioactivas con plutonio 239, cobalto 60 o estroncio 90. Estas baterías se montan en los satèlite para su alimentación energética. Son de tamaño muy reducido y pueden funcionar sin ninguna operación de mantenimiento  durante años.

La producción de electricidad

Las reacciones en cadena de fisión del uranio se utilizan en las centrales nucleares que, en Francia, producen más del 75% de la electricidad

1. El ciclo del combustible nuclear

En un reactor, la fisión del uranio 235 provoca la formación de núcleos radioactivos denominados productos de fisión. La captura de neutrones por el uranio 238 produce un poco de plutonio 239 que puede proporcionar también energía por fisión.

Sólo una ínfima parte del combustible colocado en un reactor se quema en la fisión del núcleo. El combustible que no ha sido consumido y el plutonio formado se recuperan y se reciclan para producir de nuevo electricidad. Los otros elementos formados en el transcurso de la reacción se clasifican en tres categorías de residuos en función de su actividad, para ser embalados y luego almacenados.

2. La  seguridad  nuclear

La utilización de la fantástica fuente de energía contenida en el núcleo de los átomos implica el respeto  riguroso de un conjunto de reglas de seguridad nuclear que permita asegurar el correcto funcionamiento de las centrales nucleares y la protección de la  poblaciòn 





Radiactividad natural: Es la que manifiestan los isótopos que se encuentran en la naturaleza.


Radiactividad artificial o inducida: Es la que ha sido provocada por transformaciones nucleares artificiales.

Radiactividad natural

En 1896 Becquerel descubrió que ciertas sales de uranio emitían radiaciones espontáneamente, al observar que velaban las placas fotográficas envueltas en papel negro.

Hizo ensayos con el mineral en caliente, en frío, pulverizado, disuelto en ácidos y la intensidad de la misteriosa radiación era siempre la misma. Por tanto, esta nueva propiedad de la materia, que recibió el nombre de radiactividad, no dependía de la forma física o química en la que se encontraban los átomos del cuerpo radiactivo, sino que era una propiedad que radicaba en el interior mismo



Sabemos que la radiación emitida por una desintegración puede ser de tres tipos: alfa, beta y gamma; además también hay que considerar hoy la emisión de neutrones:


La radiación alfa (ðð ð está formada por núcleos del isótopo 4 de helio, es decir está constituida por una radiación corpuscular, en la que cada corpúsculo está formado por dos protones y dos neutrones. Ello significa que tiene una masa atómica de 4 unidades y una carga eléctrica de 2 unidades positivas. Estos protones y neutrones formaban antes parte del núcleo que se ha desintegrado.


La radiación beta (ðð ð está constituida por electrones, lo que significa que es también de naturaleza corpuscular, en la que cada corpúsculo tiene una masa atómica de 1/1800 aproximadamente, y una carga de 1 unidad negativa. Posteriormente, se descubrió la radiación beta positiva, semejante a la beta pero con carga positiva. Está formada por positrones procedentes de transformación de un protón en un neutrón. Son electrones resultantes de la desintegración de los neutrones del núcleo:

neutrón→ protón + electrón + neutrino

Debido a su carga es desviada por campos eléctricos y magnéticos. Es más penetrante, aunque su poder de ionización no es tan elevado como el de la radiación ð .


La radiación gamma (γðð es de naturaleza electromagnética, semejante a la luz ordinaria, pero con mucho menor longitud de onda. Es, por lo tanto, de naturaleza ondulatoria, carente de masa en reposo y de carga. Esta radiación tampoco existía antes en el núcleo, sino que es energía que se emite como consecuencia de un reajuste energético de núcleo.



Radiactividad artificial.

Se produce la radiactividad inducida cuando se bombardean ciertos núcleos estables con partículas apropiadas.

Si la energía de estas partículas tiene un valor adecuado penetran dentro del núcleo bombardeado y forman un nuevo núcleo que, en caso de ser inestable, se desintegra después radiactivamente.

Fue descubierta por los esposos Curie, bombardeando núcleos de boro y aluminio con partículas ð. Observaron que las sustancias bombardeadas emitían radiaciones después de retirar el cuerpo radiactivo emisor de las partículas ð de bombardeo.

El estudio de la radiactividad permitió un mayor conocimiento de la estructura del núcleo atómico y de las partículas subatómicas. Se abre la posibilidad de convertir unos elementos en otros. Incluso el sueño de los alquimistas de transformar otros elementos en oro se hace realidad, aunque no resulte rentable.

No hay comentarios:

Publicar un comentario

Nota: solo los miembros de este blog pueden publicar comentarios.